Part Number Hot Search : 
CS82C50A N5400 N4001 M200Z 4069UBF CP2141 MH8S72 EL5175IY
Product Description
Full Text Search
 

To Download IRF520V Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 94092
IRF520V
HEXFET(R) Power MOSFET
Advanced Process Technology Ultra Low On-Resistance l Dynamic dv/dt Rating l 175C Operating Temperature l Fast Switching l Fully Avalanche Rated l Optimized for SMPS Applications Description
l l
D
VDSS = 100V RDS(on) = 0.165
G S
ID = 9.6A
Advanced HEXFET(R) Power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.
TO-220AB
Absolute Maximum Ratings
Parameter
ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 srew
Max.
9.6 6.8 37 44 0.29 20 9.2 4.4 7.0 -55 to + 175 300 (1.6mm from case ) 10 lbf*in (1.1N*m)
Units
A W W/C V A mJ V/ns C
Thermal Resistance
Parameter
RJC RCS RJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient
Typ.
--- 0.50 ---
Max.
3.4 --- 62
Units
C/W
www.irf.com
1
3/30/01
IRF520V
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)DSS
V(BR)DSS/TJ
RDS(on) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss EAS
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Single Pulse Avalanche Energy
Min. 100 --- --- 2.0 1.9 --- --- --- --- --- --- --- --- --- --- --- --- ---
Typ. --- 0.12 --- --- --- --- --- --- --- --- --- --- 6.9 23 30 24 4.5 7.5
--- 560 --- 81 --- 10 --- 150
Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 0.165 VGS = 10V, ID = 5.5A 4.0 V VDS = VGS, ID = 250A --- S VDS = 50V, ID = 5.5A 25 VDS = 100V, VGS = 0V A 250 VDS = 80V, VGS = 0V, TJ = 150C 100 VGS = 20V nA -100 VGS = -20V 22 ID = 9.2A 5.2 nC VDS = 80V 7.0 VGS = 10V, See Fig. 6 and 13 --- VDD = 50V --- ID = 9.2A ns --- RG = 18 --- VGS = 10V, See Fig. 10 Between lead, --- 6mm (0.25in.) nH G from package --- and center of die contact --- VGS = 0V --- VDS = 25V --- pF = 1.0MHz, See Fig. 5 44 mJ IAS = 9.2A, L = 1.0mH
D
S
Source-Drain Ratings and Characteristics
IS
ISM
VSD trr Qrr ton Notes:
Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
Conditions D MOSFET symbol --- --- 9.6 showing the A G integral reverse 37 --- --- S p-n junction diode. --- --- 1.2 V TJ = 25C, IS = 9.2A, VGS = 0V --- 83 120 ns TJ = 25C, I F = 9.2A --- 220 330 nC di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
ISD 9.2A, di/dt 360A/s, VDD V(BR)DSS,
TJ 175C
Starting TJ = 25C, L = 1.0mH
RG = 25, IAS = 9.2A, VGS=10V (See Figure 12)
Pulse width 400s; duty cycle 2%. This is a typical value at device destruction and represents
operation outside rated limits.
This is a calculated value limited to TJ = 175C .
2
www.irf.com
IRF520V
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
100
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP
10
10
4.5V
4.5V
1 0.1
20s PULSE WIDTH TJ = 25 C
1 10 100
1 1 10
20s PULSE WIDTH TJ = 175 C
100
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
3.5
ID = 9.2A
I D , Drain-to-Source Current (A)
TJ = 25 C
RDS(on) , Drain-to-Source On Resistance (Normalized)
3.0 2.5
TJ = 175 C
10
2.0 1.5
1.0
0.5 0.0 -60 -40 -20
1 4.0
V DS = 50V 20s PULSE WIDTH 5.0 6.0 7.0 8.0 9.0
VGS = 10V
0 20 40 60 80 100 120 140 160 180
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature ( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRF520V
1000 20 VGS = 0V, f = 1 MHZ Ciss = C + C , C gs gd ds SHORTED Crss = C gd Coss = C + C ds gd
ID = 9.2A VDS = 80V VDS = 50V VDS = 20V
VGS , Gate-to-Source Voltage (V)
800
16
C, Capacitance(pF)
600
Ciss
12
400
8
200
Coss Crss
4
0 1 10 100
0 0 4 8 12
FOR TEST CIRCUIT SEE FIGURE 13
16 20 24
VDS , Drain-to-Source Voltage (V)
Q G , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
100 OPERATION IN THIS AREA LIMITED BY R DS (on)
ISD , Reverse Drain Current (A)
10
ID, Drain-to-Source Current (A)
TJ = 175 C
10 100sec
1
1
1msec
TJ = 25 C
0.1 0.4
V GS = 0 V
0.6 0.8 1.0 1.2 1.4 1.6
0.1 1
Tc = 25C Tj = 175C Single Pulse 10
10msec
VSD ,Source-to-Drain Voltage (V)
100
1000
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRF520V
10.0
VDS
8.0
RD
VGS RG
D.U.T.
+
I D , Drain Current (A)
-VDD
6.0
VGS
Pulse Width 1 s Duty Factor 0.1 %
4.0
Fig 10a. Switching Time Test Circuit
2.0
VDS 90%
0.0 25 50 75 100 125 150 175
TC , Case Temperature
( C)
10% VGS
td(on) tr t d(off) tf
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10b. Switching Time Waveforms
10
Thermal Response (Z thJC )
D = 0.50 1 0.20 0.10 0.05 0.02 0.01 0.1 SINGLE PULSE (THERMAL RESPONSE) P DM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1
0.01 0.00001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF520V
80
EAS , Single Pulse Avalanche Energy (mJ)
1 5V
TOP BOTTOM
60
VD S
L
D R IV E R
ID 3.8A 6.5A 9.2A
RG
VGS 20V
D .U .T IA S tp 0 .0 1
+ - VD D
A
40
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS tp
20
0 25 50 75 100 125 150 175
Starting TJ , Junction Temperature ( C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
IAS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K
QG
12V
.2F .3F
VGS
QGS VG QGD
VGS
3mA
D.U.T.
+ V - DS
IG
ID
Charge
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
6
www.irf.com
IRF520V
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T* Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
+
-
+
RG VGS * dv/dt controlled by RG * ISD controlled by Duty Factor "D" * D.U.T. - Device Under Test
+ VDD
*
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive P.W. Period D=
P.W. Period
[VGS=10V ] ***
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
[VDD]
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
[ ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 14. For N-channel HEXFET(R) power MOSFETs
www.irf.com
7
IRF520V
Package Outline
TO-220AB Dimensions are shown in millimeters (inches)
2.87 (.11 3) 2.62 (.10 3) 10 .54 (.4 15) 10 .29 (.4 05) 3 .7 8 (.149 ) 3 .5 4 (.139 ) -A 6.47 (.25 5) 6.10 (.24 0) -B 4.69 ( .18 5 ) 4.20 ( .16 5 ) 1 .32 (.05 2) 1 .22 (.04 8)
4 1 5.24 (.60 0) 1 4.84 (.58 4)
1.15 (.04 5) M IN 1 2 3
L E A D A S S IG NM E NT S 1 - GATE 2 - D R A IN 3 - S O U RC E 4 - D R A IN
1 4.09 (.55 5) 1 3.47 (.53 0)
4.06 (.16 0) 3.55 (.14 0)
3X 3X 1 .4 0 (.0 55 ) 1 .1 5 (.0 45 )
0.93 (.03 7) 0.69 (.02 7) M BAM
3X
0.55 (.02 2) 0.46 (.01 8)
0 .3 6 (.01 4)
2.54 (.10 0) 2X N O TE S : 1 D IM E N S IO N IN G & TO L E R A N C ING P E R A N S I Y 1 4.5M , 1 9 82. 2 C O N TR O L LIN G D IM E N S IO N : IN C H
2 .92 (.11 5) 2 .64 (.10 4)
3 O U T LIN E C O N F O R M S TO JE D E C O U T LIN E TO -2 20 A B . 4 H E A TS IN K & LE A D M E A S U R E M E N T S D O N O T IN C LU DE B U R R S .
Part Marking Information
TO-220AB
E X A M P L E : TH IS IS A N IR F1 0 1 0 W IT H A S S E M B L Y LOT C ODE 9B1M
A
IN TE R N A TIO N A L R E C TIF IE R LOGO ASSEMBLY LOT CO DE
PART NU MBER IR F 10 1 0 9246 9B 1M
D A TE C O D E (Y Y W W ) YY = YEAR W W = W EEK
Data and specifications subject to change without notice. This product has been designed and qualified for the industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.3/01
8
www.irf.com


▲Up To Search▲   

 
Price & Availability of IRF520V

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X